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In this paper we present two classes of extremal approximating functions. These
functions have the property that they are entire, have finite exponential type, and
provide excellent approximations along the real line for a specific set of functions.
One class of functions provides majorants and minorants, while the other class
minimizes the L1-norm on the real line. As applications we construct extremal
trigonometric polynomials and obtain an inequality involving almost periodic tri-
gonometric polynomials. � 1997 Academic Press

1. INTRODUCTION

The work presented here represents generalizations of results and techni-
ques developed by Vaaler in [11]. Throughout this paper, the definitions
for Fourier transforms and series follow those of Stein and Weiss [10]. We
say that an entire function F(z) has exponential type _>0 if for all =>0
there exists a constant A= such that

|F(z)|�A=e(_+=)|z|

for all complex z. Finally, we write =(%)=e2?i%.
The results in [11] have their origins in a problem first considered by

Beurling. He showed that the entire function

B(z)=\sin ?z
? +

2

{z&2+ :
�

n=&�

sgn(n)(z&n)&2+2z&1= (1.1)

has several interesting properties. Specifically,

sgn(x)�B(x), (1.2)
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for all real x, and

|
�

&�
B(x)&sgn(x) dx=1. (1.3)

The function B(z) has exponential type 2?, and Beurling showed that it is
extremal in the following sense: If F(z) is any entire function of exponential
type 2? which satisfies sgn(x)�F(x) for all real x, then

|
�

&�
F(x)&sgn(x) dx�1, (1.4)

with equality holding in (1.4) if and only if F(z)=B(z). Although Beurling
never published his results, an account can be found in several places,
including [1, 6, 11]. In particular, in 1974 Selberg independently dis-
covered the function B(z) and used it to obtain a sharp form of the large
sieve inequality (see [8, pp. 213�226]). The more general question of
approximating a given function by an entire function of finite exponential
type, along with the applications of such approximations, has been studied
in a number of places, among them [2�5].

We begin by defining a generalization of the function sgn(x). For :>0,
let

&1 if x<&:,

R:(x)={1+2:&1x if &:�x<0, (1.5)

1 if 0�x.

Letting : � 0, we see that R:(x) � sgn(x) pointwise for all x{0. We would
like to duplicate Beurling's result with the function sgn(x) replaced by
R:(x). That is, find an entire function B:(z) which has exponential type 2?,
satisfies R:(x)�B:(x) for all real x, and minimizes the integral along the
real line of the difference B:(x)&R:(x). In general this seems to be a dif-
ficult problem to solve. However, if we set :=N+1�2, where N is a non-
negative integer, then we can find such a function. The construction of
B:(z) is suggested by an interpolation formula for functions F(z) which are
entire of exponential type 2? and are in Lp(R) for some finite p. Provided
that F(z) satisfies these conditions, we have (see [11, Theorem 9])

F(z)=\sin ?z
? +

2

{ :
�

n=&�

F(n)(z&n)&2+ :
�

m=&�

F$(m)(z&m)&1= . (1.6)
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Although R:(x) is not an element of Lp(R), we may use (1.6) as a guide
for constructing B:(z). For :=N+1�2, define

B:(z)=\sin ?z
? +

2

{ :
�

n=&�

R:(n)(z&n)&2+ :
N

n=1

R$:(&n)(z+n)&1+:&1z&1= .

(1.7)

If N=0, then set B:(z)=B(z) given in (1.1). It is clear from (1.5)�(1.7) that
B: = R:(n) for each integer n and that B$:(m) = R$:(m) for each integer
m{0, so that it is reasonable to expect that B:(x) provides a good
approximation to R:(x). The selection of B$:(0)=:&1 allows B:(z) to
satisfy the desired extremal properties.

Theorem 1. For each :=N+1�2 the function B:(z) satisfies

R:(x)�B:(x) (1.8)

for all real x, and

|
�

&�
B:(x)&R:(x) dx=(4:)&1. (1.9)

Furthermore, if F(z) is any entire function of exponential type 2? such that
R:(x)�F(x) for all real x, then

|
�

&�
F(x)&R:(x) dx�(4:)&1, (1.10)

with equality holding in (1.10) if and only if F(z)=B:(z).

It is a simple matter to modify the above theorem to produce an entire
function of exponential type 2? which minorizes R:(x). If we let

b:(z)=&B:(&z&:), (1.11)

then b:(z) is entire of exponential type 2?. After noting that
R:(x)=&R:(&x&:), then by (1.8) and (1.9) it follows that

b:(x)�R:(x) (1.12)

for all real x, and

|
�

&�
R:(x)&b:(x) dx=(4:)&1. (1.13)
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Finally, it is clear that Theorem 1 also implies that b:(z) is the extremal
minorizing function of exponential type 2?.

We next consider a different type of approximation problem. Before
proceeding, it will be convenient to define a new function which is closely
related to R:(x). For each :>0 let

S:(x)={:&1x
sgn(x)

if |x|<:,
if |x|�:.

(1.14)

It is easily verified that S:(x+:)=R2:(x). Rather than constructing a func-
tion which majorizes or minorizes S:(x), we seek an entire function of finite
exponential type for which the integral

|
�

&�
|S:(x)&F(x)| dx

is minimized. As in the previous case, this approximation problem is dif-
ficult to solve in general. We can succeed by again setting :=N+1�2 and
searching among functions F(z) which are entire of exponential type ?. If
F(z) is such a function and is bounded along the real line, then F(z) may
be expressed by the interpolation formula (see [13, Vol. II, p. 275])

F(z)=\sin ?z
? +{F(0) z&1+ :

�

n=&�
n{0

(&1)n F(n)((z&n)&1+n&1)+F$(0)= .

(1.15)

In a manner similar to the previous problem, we use (1.15) as a guide for
constructing a function G:(z) which approximates S:(x). Define

G:(z)=\sin ?z
? +{ :

�

n=&�
n{0

(&1)n S:(n)((z&n)&1+n&1)+G$:(0)= , (1.16)

where

G$:(0)=2:&1A(N)&2 :
�

n=N+1

(&1)n 1
n

, (1.17)

and A(N )=1 for N odd and A(N )=0 for N even.

Theorem 2. For each :=N+1�2, the function G:(z) satisfies

0�(&1)N sgn(sin ?x)[S:(x)&G:(x)] (1.18)
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for all real x, and

|
�

&�
|S:(x)&G:(x)| dx=(4:)&1. (1.19)

Furthermore, if F(z) is any entire function of exponential type ?, then

|
�

&�
|S:(x)&F(x)| dx�(4:)&1, (1.20)

with equality holding in (1.20) if and only if F(z)=G:(z).

An analogous result, with sgn(x) in place of S:(x), is given in [11,
Theorem 4]. The proofs of Theorems 1 and 2 are contained in Section 2.

There are a variety of applications for the functions B:(z) and G:(z). We
shall present two here. The first involves the construction of classes of
extremal trigonometric polynomials. Let

U(x)=max[0, 1&2 |x|], (1.21)

and then define the periodic function

u(x)= :
�

n=&�

U(x&n). (1.22)

Thus u(x) is the familiar triangular wave function. We use B:(z) and the
Poisson summation formula together with the Paley�Wiener theorem to
construct trigonometric polynomials which majorize u(x) and are extremal
in the sense described below.

Theorem 3. For each nonnegative integer N there exists a trigonometric
polynomial mN (x) of degree 2N such that

u(x)�mN (x) (1.23)

for all real x, and

|
1�2

&1�2
mN (x)&u(x) dx=2(4N+2)&2. (1.24)

Furthermore, if f (x) is any trigonometric polynomial of degree 2N or less
and u(x)�f (x) for all x, then

|
1�2

&1�2
f (x)&u(x) dx�2(4N+2)&2, (1.25)

with equality holding in (1.25) if and only if f (x)=mN (x).
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An easy consequence of Theorem 3 is that if we define the function

lN (x)=1&mN (x&1�2),

then lN (x) is a trigonometric polynomial of degree 2N and satisfies

lN (x)�u(x) (1.26)

for all real x, and

|
1�2

&1�2
u(x)&lN (x) dx=2(4N+2)&2. (1.27)

It is also clear that lN (x) is the extremal minorizing trigonometric polyno-
mial of degree 2N. The next theorem is proved in a manner similar to
Theorem 3, using the function G:(z) in place of B:(z).

Theorem 4. For each nonnegative integer N there exists a trigonometric
polynomial pN (x) of degree 2N that satisfies

0�sgn(cos(4N+2) ?x)[u(x)&pN (x)], (1.28)

for all real x, and

|
1�2

&1�2
|u(x)&pN (x)| dx=(4N+2)&2. (1.29)

Furthermore, if f (x) is any trigonometric polynomial of degree 2N or less,
then

|
1�2

&1�2
|u(x)&f (x)| dx�(4N+2)&2, (1.30)

with equality holding in (1.30) if and only if f (x)=pN(x).

The proofs of Theorems 3 and 4, along with explicit formulas for
computing the coefficients m̂N (n) and p̂N (n), are given in Section 3.

The definitions of B:(z) and G:(z) may be extended to any :>0. For
each such :, define 2(:) by

2(:)={
1&: if 0<:�1�2,

(1.31)
(4:)&1 \ :

[:+1�2]&1�2+
2

if :>1�2.

Here [x] denotes the greatest integer less than or equal to x. The following
are corollaries to Theorems 1 and 2, respectively.
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Corollary 1. For each :>0, there exists an entire function B:(z) of
exponential type 2? such that

R:(x)�B:(x) (1.32)

for all real x, and

|
�

&�
B:(x)&R:(x) dx=2(:). (1.33)

Corollary 2. For each :>0, there exists an entire function G:(z) of
exponential type ? such that

|
�

&�
|S:(x)&G:(x)| dx=2(:). (1.34)

The proof of Corollary 1 is given in Section 4. The proof of Corollary 2,
which is similar, is omitted. In the course of the proof, it is evident that
B:(z) and G:(z) are extremal for 0<:<1�2. For :�1�2, the functions
typically are not extremal. However, by a simple modification of the proof
it can be shown that the integrals in (1.33) and (1.34) cannot be made
smaller than

(4:)&1 \ :
[:+1�2]+1�2+

2

,

subject to the constraints imposed. Thus B:(z) and R:(z) provide close to
optimal approximations in this case.

We now consider a second application which makes use of the
corollaries. Let *1 , *2 , ..., *N be real numbers and c1 , c2 , ..., cN be arbitrary
complex numbers. Define the almost periodic trigonometric polynomial

T(x)= :
N

n=1

cne(*nx), (1.35)

where we recall that e(%)=e2?i%.

Theorem 5. Let r and s be real numbers, with s>0. If |*n |�=>0 for
each n=1, 2, ..., N, then

} s&1 |
r+s

r
T(x) dx }�(4=)&1 2(=s) sup

t
|T$(x)|. (1.36)
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If T(x) happens to be a real-valued function, then

} s&1 |
r+s

r
T(x) dx }�(2=)&1 2(=s) sup

t
T$(t). (1.37)

Letting s � 0 in (1.36) and (1.37), we recover inequalities first proved by
Bohr [9, p. 142] and Beurling [11, Theorem 15], respectively. The latter
inequality was Beurling's motivation for constructing the function B(z).
The proof of Theorem 5 is given in Section 4.

2. PROOF OF THEOREMS 1 AND 2

In order to simplify some later expressions, we define

C(x)= :
�

n=1

(x+n)&2. (2.1)

We pause to note the simple identity

\sin ?x
? +

2

:
N

n=1

(x+n)&2=\sin ?x
? +

2

[C(x)&C(x+N )], (2.2)

which will be used in the work that follows. We shall also require the
bounds for C(x) which are given below.

Lemma 1. If x>&1�2, then

C(x)<
2

2x+1
, (2.3)

and if x>0, then

1
x

&
1

2x2<C(x). (2.4)

Proof. Assume x>&1�2. Since t&2 is concave up for all t>0, we have

C(x)< :
�

n=1
|

x+n+1�2

x+n&1�2
t&2 dt

=|
�

x+1�2
t&2 dt=

2
2x+1

.
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This verifies (2.3). If x>0, then upon applying the arithmetic-geometric
mean inequality, we have

1
x

=|
�

x
t&2 dt

= :
�

n=0
|

x+n+1

x+n
t&2 dt

= :
�

n=0

(x+n)&1 (x+n+1)&1

< :
�

n=0

1
2

[(x+n)&2+(x+n+1)&2]=
1

2x2+C(x).

Thus (2.4) now follows.

Proof of Theorem 1. First suppose that :=1�2, so that B:(z)=B(z). If
x�&1�2 or 0�x, then R:(x)=sgn(x), so that (1.8) follows from (1.2).
Thus we may assume that &1�2<x<0, in which case R:(x)=1+4x.
Recalling the identity

1=\sin ?x
? +

2

:
�

n=&�

(x&n)&2=\sin ?x
? +

2

[x&2+C(x)+C(&x)], (2.5)

we may express R:(x) and B:(x) by

R:(x)=\sin ?x
? +

2

[x&2+4x&1+(1+4x)(C(x)+C(&x))], (2.6)

B:(x)=\sin ?x
? +

2

[x&2+2x&1+C(&x)&C(x)]. (2.7)

Subtracting (2.6) from (2.7) and applying Lemma 1 yields

B:(x)&R:(x)=\sin ?x
? +

2

[&2x&1&4xC(&x)&(4x+2) C(x)]

�\sin ?x
? +

2

{&2x&1&4x \ 1
&x

&
1

2x2+&(4x+2) \ 2
2x+1+=

=0.
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Therefore (1.8) holds for all real x. We also have, by (1.3),

|
�

&�
B:(x)&R:(x) dx=|

�

&�
B(x)&sgn(x) dx&|

�

&�
R:(x)&sgn(x) dx

=1&1�2=1�2,

which verifies (1.9). The inequality (1.10) and the uniqueness of B:(z)
follows from (1.4) and the uniqueness of B(z).

We now assume that N�1. To establish (1.8) we consider three cases
corresponding to the three parts of the piece-wise defined R:(x). In the
course of verifying (1.8), we shall also show that B:(x)&R:(x) is
integrable, which will be required to evaluate the integral in (1.9). Before
proceeding, we first establish an identity which will be used in all three
cases. For each integer n, replace R:(n) and R$:(n) in (1.7) with the function
values from (1.5). Applying the identity (2.5), we have

B:(x)&1=\sin ?x
? +

2

{&C(x)&C(x+N )+(:x)&1+(2:)&1

_ :
N

n=1
\ 2:&4n

(x+n)2+
4

x+n+= .

Placing the expression in the sum above over a common denominator,
applying (2.2) and simplifying produces

B:(x)&1=:&1 \sin ?x
? +

2

[2xC(x)&2(:+x) C(x+N)+x&1]. (2.8)

Now suppose that x�0, so that in this case R:(x)=1. If x=0, then
B:(x)=R:(x), so that we may assume that x>0. Since B:(x)&R:(x)=
B:(x)&1, we may apply Lemma 1 to the term in brackets on the right of
(2.8) to obtain the lower bound

2xC(x)&2(:+x) C(x+N )+x&1>2x \1
x

&
1

2x2+&2(:+x)

_\ 2
2(x+N )+1++x&1=0.

Thus it follows that R:(x)�B:(x) for all x�0. We may also apply
Lemma 1 to (2.8) to obtain an upper bound for B:(x)&R:(x). After sim-
plifying we find that

B:(x)&R:(x)�:&1 \sin ?x
? +

2

{ 1
x(2x+1)

+
1

2(x+N )2= .
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It follows that B:(x)&R:(x) is integrable on the positive real line. Next
suppose that &:<x<0. In this case R:(x)=1+2:&1x, so that
B:(x)&R:(x)=(B:(x)&1)&2:&1x. By (2.5) we have

2:&1x=:&1 \sin ?x
? +

2

[2x&1+2xC(x)+2xC(&x)],

so that together with (2.8) and an application of Lemma 1, it follows that

B:(x)&R:(x)=:&1 \sin ?x
? +

2

[&x&1&2xC(&x)&2(:+x) C(x+N)]�0.

Finally, suppose that x<&:, so that R:(x)=&1. Writing
B:(x)&R:(x)=(B:(x)&1)+2 and applying (2.5) and (2.8) yields

B:(x)&R:(x)=:&1 \sin ?x
? +

2

[2:(x&2+C(&x))+2(:+x)

_(C(x)&C(x+N ))+x&1].

Using the identity

\sin ?x
? +

2

[C(x)&C(x+N )]

=\sin ?x
? +

2

[C(&x&N&1)&C(&x)&x&2]

and applying Lemma 1 yields

B:(x)&R:(x)=:&1 \sin ?x
? +

2

_[&x&1&2xC(&x)+2(:+x) C(&x&N&1)]�0.

This settles (1.8) for all x<&:. The inequality R:(x)�B:(x) for x=&:
follows from the continuity of R:(x) and B:(x), so that (1.8) holds for all
real x. Using the preceeding representation of B:(x)&R:(x) for x<&:
and applying Lemma 1 a final time, we obtain the upper bound

B:(x)&R:(x)�:&1 \sin ?x
? +

2

{ 1
2(x+N+1)2+

1
x(2x&1)= .

Combining this with our earlier work implies that B:(x)&R:(x) is
integrable along the entire real line. We next establish the lower bound

285EXTREMAL FUNCTIONS AND POLYNOMIALS



File: 640J 302012 . By:DS . Date:20:03:97 . Time:14:52 LOP8M. V8.0. Page 01:01
Codes: 1837 Signs: 798 . Length: 45 pic 0 pts, 190 mm

given in (1.10), and in process will also show that (1.9) holds. Suppose that
F(z) is an entire function of exponential type 2? such that R:(x)�F(x) for
all real x. We may also assume without any loss that

|
�

&�
F(x)&R:(x) dx<�.

Now define the functions

M(z)= 1
2 [F(z)+F(&z)] (2.9)

and

L:(x)= 1
2 [R:(x)+R:(&x)]. (2.10)

It follows easily from (2.9) and (2.10) that

|
�

&�
F(x)&R:(x) dx=|

�

&�
M(x)&L:(x) dx. (2.11)

Next we note that

L:(x)=max[0, 1&:&1 |x|],

so that clearly L:(x) is integrable, with

|
�

&�
L:(x) dx=:. (2.12)

Thus it follows from (2.11) that M(x) is also integrable. From the defini-
tion (2.9) it is clear that M(z) is an entire function of exponential type 2?,
so that by the Poisson summation formula ([12], pp. 104�105) we find
that

|
�

&�
M(x) dx= :

�

n=&�

M(n)

� :
�

n=&�

L:(n)

= :
N

n=&N

(1&:&1 |n| )

=:+(4:)&1. (2.13)
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Combining together (2.11), (2.12) and (2.13) now yields (1.10). We recall
that B:(n)=R:(n) for each integer n, so that if F(z)=B:(z) then the
inequality in (2.13) holds with equality. This in turn implies that (1.10)
holds with equality, which verifies (1.9). By the same reasoning, in order
for equality to hold in (1.10) it must be that F(n)=R:(n) for all integers
n. Moreover, as R:(x)�F(x) for all real x, it follows that F$(n)=R$:(n) for
each integer n{0. The function B:(z) also satisfies these conditions, and
the difference F(z)&B:(z) is an integrable entire function of exponential
type 2?. Applying the interpolation formula (1.6) and the above remarks,
we find that

F(z)&B:(z)=c \sin ?z
? +

2 1
z

(2.14)

for some constant c. The right side of (2.14) is integrable only if c=0,
which implies that F(z)=B:(z). Thus B:(z) is the unique extreme
majorant, and the proof is complete.

We take a few moments to establish some preliminary results that will be
required in the proof of Theorem 2. As a notational convenience, for all
x>&1 define

D(x)= :
�

n=1

(x+2n)&1 (x+2n&1)&1.

Lemma 2. If &1�2<x, then

1
x+1

&
1

2x&3
<D(x)<

1
2x+1

. (2.15)

Proof. By the arithmetic-geometric mean inequality and Lemma 1, we
have

D(x)= :
�

n=1

(x+2n)&1 (x+2n&1)&1

<
1
2

:
�

n=1

[(x+2n)&2+(x+2n&1)&2]

=
1
2

C(x)<
1

2x+1
.
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This verifies the upper bound in (2.15). To obtain the lower bound, we
note that

D(x)+D(x+1)= lim
M � �

:
M

n=1

[(x+2n)&1 (x+2n&1)&1

+(x+2n)&1 (x+2n+1)&1]

= lim
M � �

:
M

n=1

[(x+2n&1)&1&(x+2n+1)&1]

= lim
M � �

[(x+1)&1&(x+2M+1)&1]=(x+1)&1.

Thus it follows that

D(x)=(x+1)&1&D(x+1),

and applying the upper bound to D(x+1) on the right above completes
the proof.

By using the same ideas as in the proof above, we may verify for all
x>&1 that

:
N

n=1

(&1)n (x+n)&1=(&1)N D(x+N)&D(x), (2.16)

an identity which shall needed in the proof of Theorem 2. It may be shown
(see [11], Theorem 4) that the function

G(z)=\sin ?z
? +{ :

�

n=&�

(&1)n sgn(n)((z&n)&1+n&1)+log 4=
is entire of exponential type ?, that

|
�

&�
|sgn(x)&G(x)| dx=1,

and that G$(x) is integrable. Suppose that F(z) is an entire function of
exponential type ? such that

|
�

&�
|S:(x)&F(x)| dx<�.

As the differences S:(x)&sgn(x) and sgn(x)&G(x) are also integrable, it
follows from the triangle inequality that F(x)&G(x) is integrable. The
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difference F(z)&G(z) is entire of exponential type ?, so that by a result of
Plancherel and Polya [7] it follows that F$(x)&G$(x) is integrable, and
thus F$(x) is integrable. Now define

E:(x)=S:(x)&F(x), H(z)=F$(z).

Lemma 3. For each :>0, the Fourier transform of E:(x) is given by

E� :(t)=
1

2?it {
sin 2:?t

:?t
&H� (t)= . (2.17)

Proof. By integrating directly we have

|
�

&�
e(&tx) dE:(x)=:&1 |

:

&:
e(&tx) dx&|

�

&�
F$(x) e(&tx) dx

=
sin 2:?t

:?t
&H� (t). (2.18)

Integrating by parts on the left side of (2.18) and solving for E� :(t) then
yields (2.17).

Proof of Theorem 2. To establish (1.18), we first note that if x=0 then
the result holds trivially. Next, as sgn(sin ?x)[S:(x)&G:(x)] is an even
function, it suffices to assume that x>0. Let M>N be an integer, and
define

G:, M(z)=:&1 \sin ?z
? +{2A(N )+ :

N

n=&N
n{0

n(&1)n ((z&n)&1+n&1)

+: :
N+1�|n|�M

(&1)n sgn(n)((z&n)&1+n&1)

&2: :
M

n=N+1

(&1)n n&1= .

It follows from (1.14), (1.16) and (1.17) that G:, M(z) � G:(z) uniformly on
compact subsets of C as M � �. Simplifying above, we have

G:, M(z)=:&1 \sin ?z
? +{ :

N

n=&N
n{0

(&1)n n(z&n)&1

+: :
N+1�|n|�M

(&1)n sgn(n)(z&n)&1= . (2.19)
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As in the proof of Theorem 1, we now consider different cases. First, sup-
pose that 0<x<:, so that S:(x)=:&1x. Define

S:, M(x)=:&1 \sin ?x
? +{1+x :

M

n=&M
n{0

(&1)n (x&n)&1= , (2.20)

so that S:, M(x) � S:(x) as M � �. Subtracting (2.19) from (2.20), com-
bining sums and simplifying, we find that

S:, M(x)&G:, M(x)=:&1 \sin ?x
? +{1&2A(N )+(x&:)

_ :
M

n=N+1

(&1)n (x&n)&1

+(x+:) :
M

n=N+1

(&1)n (x+n)&1= .

Reindexing the sums and using (2.16), it follows that the right side of the
expression above is equal to

:&1 \sin ?x
? + [1&2A(N )+(&1)N (:&x)((&1)M&N D(&x+M)

&D(&x+N))+(&1)N (x+:)((&1)M&N D(x+M)&D(x+N ))].

Letting M � � yields

S:(x)&G:(x)=:&1 \sin ?x
? + [1&2A(N )+(&1)N (x&:) D(&x+N )

&(&1)N (x+:) D(x+N )].

Taking N to be even and applying Lemma 2 to the expression in brackets
above, we have

1+(x&:) D(&x+N )&(x+:) D(x+N )

�1+(x&:)(2(N&x)+1)&1&(x+:)(2(N+x)+1)&1,

and as the right side above is zero, it follows that (1.18) holds for 0<x<:.
The case for N odd is similar. Now suppose that x>:, so that S:(x)=1.
Here we define

S:, M(x)=\sin ?x
? +{x&1+ :

M

n=&M
n{0

(&1)n (x&n)&1= , (2.21)
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so that again S:, M(x) � S:(x) as M � �. Subtracting (2.19) from (2.21)
and combining sums, we have

S:, M(x)&G:, M(x)=:&1 \sin ?x
? +{:x&1+ :

N

n=&N
n{0

(&1)n (:&n)(x&n)&1

+2: :
M

n=N+1

(&1)n (x+n)&1= .

We next add and subtract the expression

x :
N

n=&N
n{0

(&1)n (x&n)&1

to the first sum on the right above. After combining terms, reindexing the
resulting sums and applying (2.16) we have

S:, M(x)&G:, M(x)=:&1 \sin ?x
? + [1&2A(N)+(&1)N (:&x) D(x&N&1)

&(&1)N (:+x) D(x+N)+2:(&1)M D(x+M)].

Letting M � � then yields

S:(x)&G:(x)=:&1 \sin ?x
? + [1&2A(N )+(&1)N (:&x) D(x&N&1)

&(&1)N (:+x) D(x+N )].

As in the preceding case, applying Lemma 2 to the expression in brackets
serves to verify (1.18) for all x>:. The case x=: follows from the con-
tinuity of S:(x)&G:(x), so that (1.18) holds for all x. A second application
of Lemma 2 produces an upper bound for S:(x)&G:(x). Taking N even,

S:(x)&G:(x)

�:&1 } sin ?x
? }{ 1

4(x&:+1)(x&N )
+

1
4(x+:+1)(x+N+1)= .

Thus S:(x)&G:(x) is integrable along the real line. The case for N odd is
similar.
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We now verify the lower bound (1.20), and in the process it will be
evident that (1.19) holds as well. Suppose that F(z) is an entire function of
exponential type ?, and that S:(x)&F(x) is integrable. As in Lemma 3, let
E:(x)=S:(x)&F(x) and H(z)=F$(z), and then observe that

|
�

&�
|S:(x)&F(x)| dx� } |

�

&�
sgn(sin ?x) E:(x) dx } . (2.22)

The function sgn(sin ?x) has period 2 and Fourier series

sgn(sin ?x)=
2
?i

:
�

n=&�

(2n+1)&1 e((n+1�2)x). (2.23)

Applying this expansion to the right side of (2.22) yields

} 2
?i |

�

&�
E:(x) :

�

n=&�

(2n+1)&1 e((n+1�2)x) dx }
= } 2

?i
:
�

n=&�

(2n+1)&1 E� :(&(n+1�2)) } .
Since F(z) has exponential type ?, so does F$(z), and hence it follows that
H� (t)=0 for all |t|�1�2. By Lemma 3, the preceeding expression is equal
to

} 2
?i

:
�

n=&�

(2n+1)&1 sin 2:?(n+1�2)
2:?2 i(n+1�2)2 }= 4

:?3 } :
�

n=&�

(&1)n (2n+1)&3 }
=(4:)&1.

This verifies the lower bound given in (1.20). By (1.18) it is clear that there
is equality in (2.22) when F(z)=G:(z). Thus in this case equality holds in
(1.20), so that

|
�

&�
|S:(x)&G:(x)| dx=(4:)&1,

which is (1.19). If F(z) is any entire function of exponential type ? for
which (1.20) holds with equality, then since S:(x)&F(x) is continuous it
follows that S:(n)=F(n) for each integer n, which in turn implies that

F(n)=G:(n) (2.24)
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for each integer n. Clearly F(z)&G:(z) has exponential type ? and is
integrable along the real line. Hence the interpolation formula (1.15) is
applicable, and in view of (2.24) it follows that

F(z)&G:(z)=c sin ?z (2.25)

for some constant c. In order for the right side of (2.25) to be integrable,
c=0, which implies that F(z)=G:(z). Thus G:(z) is the unique extremal
function and the proof is complete.

3. PROOF OF THEOREMS 3 AND 4

We begin with a description of the construction of the trigonometric
polynomial mN(x) given in Theorem 3. Let :=N+1�2, and define

MN (z)= 1
2 [B:(z)+B:(&z)]. (3.1)

Recall the function L:(x) in (2.10) given by

L:(x)= 1
2 [R:(x)+R:(&x)].

It is clear that L:(x)�MN (x) for all real x, and by applying (2.11) with
F(z)=B:(z) we deduce that

|
�

&�
MN (x)&L:(x) dx=(4N+2)&1. (3.2)

Next we note that L:((2N+1)x)=U(x), where U(x) is defined in (1.21).
It follows that

U(x)�MN ((2N+1)x) (3.3)

for all real x, and by an easy change of variables and (3.2) we have

|
�

&�
MN ((2N+1)x)&U(x) dx=2(4N+2)&2. (3.4)

The function MN (x) is integrable, with Fourier transform given by

(2N+1)&1 M� N ((2N+1)&1 t). (3.5)

A formula for M� N (t) is contained in the following lemma.
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Lemma 4. The function MN (z) has Fourier transform supported (&1, 1),
with

M� N (t)={(1&|t| )
sin2(N+1) ?t+sin2 N?t

(2N+1) sin2 ?t

+
2 sgn(t) sin(N+1) ?t sin N?t

(2N+1) ? sin ?t = (3.6)

for all |t|<1.

Proof. The support of M� N (t) follows immediately from the observa-
tions that MN (z) has exponential type 2?, that M� N (t) is continuous, and
an application of the Paley�Wiener theorem ([10], pp. 108�114). Now
define

K(z)=\sin ?z
?z +

2

=|
1

&1
(1&|t| ) e(tz) dt, (3.7)

J(z)=zK(z)=(2?i)&1 |
1

&1
sgn(t) e(tz) dt. (3.8)

From the definition of B:(z) and (3.1), we have

MN (z)= :
N

n=&N {\1&
2 |n|

2N+1+ K(z&n)&
2

2N+1
sgn(n) J(z&n)= . (3.9)

Replacing the functions K(z) and J(z) in (3.9) with their integral represen-
tations from (3.7) and (3.8) and then reversing the order of the integrals
and sums, MN (z) may be written

MN (z)=|
1

&1 {(1&|t| ) :
N

n=&N \1&
2 |n|

2N+1+ e(&nt)

&
sgn(t)

(2N+1) ?i
:
N

n=&N

sgn(n) e(&nt)= e(tz) dt. (3.10)

The expression within the brackets on the right of (3.10) is then the Fourier
transform of MN (z). Applying the identities

:
N

n=&N \1&
2 |n|

2N+1+ e(&nt)=
sin2(N+1) ?t+sin2 N?t

(2N+1) sin2 ?t
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and

:
N

n=&N

sgn(n) e(&nt)=&
2i sin(N+1) ?t sin N?t

sin ?t

completes the proof.

Now define the periodic function

mN (x)= :
�

n=&�

MN ((2N+1)(x&n)). (3.11)

By the Poisson summation formula, (3.5) and Lemma 4, it follows that

mN (x)= :
�

n=&�

(2N+1)&1 M� N ((2N+1)&1 n) e(nx)

=(2N+1)&1 :
2N

n=&2N

M� N ((2N+1)&1 n) e(nx). (3.12)

Proof of Theorem 3. It is clear from (3.12) and Lemma 4 that mN (x)
has degree 2N. The inequality (1.23) follows from the definition of u(x)
given in (1.22), the inequality (3.3) and (3.11). The integral (1.24) may be
deduced from (3.4). To establish that mN (x) is extremal, suppose that f (x)
is a trigonometric polynomial of degree 2N or less, and that u(x)�f (x) for
all real x. Then

0� :
N

m=&N { f \ m
2N+1+&u \ m

2N+1+=
= :

N

m=&N

:
2N

n=&2N

f� (n) e \ mn
2N+1+& :

N

m=&N \1&2 } m
2N+1 }+

= :
2N

n=&2N

f� (n) :
N

m=&N

e \ mn
2N+1+&

1
2

(2N+1)&(4N+2)&1

=(2N+1) f� (0)&
1
2

(2N+1)&(4N+2)&1.

Thus we have
1
2+2(4N+2)&2�f� (0),
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and the lower bound (1.25) now follows. In order for equality to hold in
(1.25) it must be that there is equality in the preceeding inequalities. This
implies that

f \ m
2N+1+=u \ m

2N+1+
for each integer m satisfying &N�m�N. Since u(x)�f (x), it also must
be that

f $ \ m
2N+1+=u$ \ m

2N+1+
for each m{0, &N�m�N. As f (x) has degree at most 2N, these 4N+1
conditions completely determine the trigonometric polynomial ([13],
Vol. II, p. 23), so that f (x) is unique. Thus mN (x) is the unique extreme
majorant of degree 2N.

The construction of pN (x) and the proof of Theorem 4 use ideas similar
to those just employed. To begin, let

PN (z)= 1
2 [G:(z+N+1�2)+G:(&z+N+1�2)], (3.13)

where again :=N+1�2. Suppose that

VN (z)= 1
2 [S:(z+N+1�2)+S:(&z+N+1�2)]. (3.14)

Applying (1.18) we see that

0�(&1)N sgn(sin ?(x+N+1�2))[S:(x+N+1�2)&G:(x+N+1�2)]

=sgn(cos ?x)[S:(x+N+1�2)&G:(x+N+1�2)],

and likewise we have

0�sgn(cos ?x)[S:(&x+N+1�2)&G:(&x+N+1�2)].

It plainly follows that

0�sgn(cos ?x)[VN (x)&PN (x)]. (3.15)

Applying this inequality together with (1.19), we have

|
�

&�
|VN (x)&PN (x)| dx=|

�

&�
sgn(cos ?x)[VN (x)&PN (x)] dx

=|
�

&�
(&1)N sgn(sin ?x)[S:(x)&G:(x)] dx

=(4N+2)&1. (3.16)
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Next we note that

U(x)=VN ((4N+2)x),

which implies

u(x)= :
�

n=&�

VN ((4N+2)(x&n)).

PN (z) is entire of exponential type ?, and by (3.16) PN (x) is integrable.
Hence by the Poisson summation formula and the Paley�Wiener theorem,
we may define the trigonometric polynomial

pn(x)= :
�

n=&�

PN ((4N+2)(x&n))

=(4N+2)&1 :
2N

n=&2N

P� N ((4N+2)&1 n) e(nx). (3.17)

The coefficients p̂N (n) may be explicitly determined using the following
result.

Lemma 5. The function PN (z) has Fourier transform supported on
(&1�2, 1�2), with

P� N (t)=
sin2(2N+1) ?t cos ?t

(2N+1) sin2 ?t
(3.18)

for all |t|<1�2.

Proof. First, support of P� N (t) follows from the remarks preceeding the
lemma. Next, if F(z) is an entire function of exponential type ? and F(x)
is integrable, then F(z) may be expressed by an interpolation formula that
is somewhat simpler than the one given in (1.15). In this case we have (see
[12], p. 107)

F(z)= :
�

n=&�

F(n) I(z&n), (3.19)

where

I(z)=\sin ?z
?z +=|

1�2

&1�2
e(tz) dt. (3.20)
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In what follows, it will be convenient to have a translated version of the
formula in (3.19). By an easy change of variables argument, we may trans-
form (3.19) into

F(z)= :
�

n=&�

F(n+1�2) I(z&n&1�2). (3.21)

For each integer n we have PN (n+1�2)=VN (n+1�2), and since

VN (x)=max[0, 1&(2N+1)&1 |x|],

it follows from (3.20) and (3.21) that

PN (z)= :
2N

n=&(2N+1)
\1&

|n+1�2|
2N+1 + I(z&n&1�2)

=|
1�2

&1�2 { :
2N

n=&(2N+1)
\1&

|n+1�2|
2N+1 + e(&(n+1�2) t)= e(tz) dt.

Thus we deduce that

P� N (t)= :
2N

n=&(2N+1)
\1&

|n+1�2|
2N+1 + e(&(n+1�2) t)

= :
4N+1

n=&(4N+1) \1&
|n|

4N+2+ e(nt�2)& :
2N

n=&2N \1&
|n|

2N+1+ e(nt)

=
1

4N+2 \
sin(2N+1) ?t

sin ?t�2 +
2

&
1

2N+1 \
sin(2N+1) ?t

sin ?t +
2

=
sin2(2N+1) ?t cos ?t

(2N+1) sin2 ?t

which is (3.18), and the proof is complete.

Proof of Theorem 4. It is clear from Lemma 5 that pN (x) has degree
2N. To verify (1.29), we apply (3.15) to obtain

0� :
�

n=&�

sgn(cos(4N+2) ?(x&n))[VN ((4N+2)(x&n))

&PN ((4N+2)(x&n))]

=sgn(cos(4N+2) ?x) :
�

n=&�

[VN ((4N+2)(x&n))

&PN ((4N+2)(x&n))]

=sgn(cos(4N+2) ?x)[u(x)&pN (x)].
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Next, using (1.28) and (3.16) we have

|
1�2

&1�2
|u(x)&pN (x)| dx

=|
1�2

&1�2
sgn(cos(4N+2) ?x)[u(x)&pN (x)] dx

= :
�

n=&�
|

1�2

&1�2
sgn(cos(4N+2) ?x)[VN ((4N+2)(x&n))

&PN ((4N+2)(x&n))] dx

=(4N+2)&1 |
�

&�
sgn(cos ?x)[VN (x)&PN (x)] dx.

=(4N+2)&1 |
�

&�
|VN (x)&PN (x)| dx=(4N+2)&2.

Thus (1.29) holds. Finally, we note that sgn(cos(4N+2) ?x) is periodic
and has Fourier series expansion

sgn(cos(4N+2) ?x)=
2
?

:
�

n=&�

(&1)n (2n+1)&1 e((2N+1)(2n+1)x).

(3.22)

If f (x) is any trigonometric polynomial of degree 2N or less, then it follows
from (3.22) that

|
1�2

&1�2
f (x) sgn(cos(4N+2) ?x) dx=0. (3.23)

Therefore for such a polynomial we have

|
1�2

&1�2
|u(x)&f (x)| dx� } |

1�2

&1�2
sgn(cos(4N+2) ?x)[u(x)&f (x)] dx }

= } |
1�2

&1�2
(1&2 |x| )

2
?

:
�

n=&�

(&1)n (2n+1)&1

_e((2N+1)(2n+1)x) dx }
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=
4
? } :

�

n=&�

(&1)n (2n+1)&1

_|
1�2

&1�2
|x| e((2N+1)(2n+1)x) dx }

=
4
?3 (2N+1)&2 } :

�

n=&�

(&1)n (2n+1)&3 }
=(4N+2)&2.

This establishes the lower bound given in (1.30). In order for equality to
occur, it must be that f (x)=u(x) at each zero of cos(4N+2)?x. There are
4N+1 distinct roots (mod 1), and these conditions completely determine a
trigonometric polynomial of degree 2N or less ([13], Vol. II, pp. 1�3).
Therefore pN (x) is unique.

4. PROOFS OF REMAINING RESULTS

Proof of Corollary 1. To begin, if 0<:�1�2, then we may take
B:(z)=B(z) which is Beurling's function defined in (1.1). From (1.3) we see
that (1.33) holds in this case, and an application of Theorem 1 in the case
of B1�2(z) shows that the inequality (1.32) is valid as well. Now suppose
that :>1�2, and then define

:~ =[:+1�2]&1�2.

Note that if :=N+1�2, then :~ =:, and in general we have :~ �:. It is clear
that :~ =N+1�2 for some integer N�0, so that B:~ (z) is given in (1.7).
Therefore we may now define

B:(z)=B:~ (:~ :&1z).

It is clear that B:(z) is entire of exponential type at most 2?. Furthermore
we have

R:(x)=R:~ (:~ :&1x)

�B:~ (:~ :&1x)=B:(x)
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for all real x, so that (1.32) holds. Finally,

|
�

&�
B:(x)&R:(x) dx=::~ &1 |

�

&�
B:~ (x)&R:~ (x) dx

=(::~ &1)(4:~ )&1

=2(:),

which verifies (1.33) and completes the proof.

Proof of Theorem 5. If ; is any real number and F(z) is an integrable
entire function of exponential type 2?=, then by the Paley�Wiener theorem
it follows that

|
�

&�
T(x+;) F(x) dx=|

�

&�
:
N

n=1

cne(*n(x+;)) F(x) dx

= :
N

n=1

cn e(*n;) |
�

&�
F(x) e(*nx) dx

= :
N

n=1

cn e(*n;) F� (&*n)=0.

Therefore we have

s&1 |
r+s

r
T(x) dx= 1

2 |
�

&�
T(x+r+s�2) dSs�2(x)

= 1
2 |

�

&�
T(x+r+s�2) d[S=s(2=x)&G=s(2=x)]

=&1
2 |

�

&�
[S=s(2=x)]&G=s(2=x)] T $(x+r+s�2) dx.

Thus by Corollary 2,

} s&1 |
r+s

r
T(x) dx }�(sup

t
|T $(t)| ) \ 1

2 |
�

&�
|S=s(2=x)&G=s(2=x)| dx+

=(4=)&1 2(=s) sup
t

|T $(t)|,

which verifies (1.36). If the additional assumption that T(x) is real-valued
is included, then

301EXTREMAL FUNCTIONS AND POLYNOMIALS



File: 640J 302028 . By:DS . Date:20:03:97 . Time:14:52 LOP8M. V8.0. Page 01:01
Codes: 3970 Signs: 1526 . Length: 45 pic 0 pts, 190 mm

s&1 |
r+s

r
T(x) dx= 1

2 |
�

&�
T(x+r+s) dRs(x)

= 1
2 |

�

&�
T(x+r+s)d[R=s(=x)&B=s(=x)]

= 1
2 |

�

&�
[B=s(=x)&R=s(=x)] T $(x+r+s) dx

� 1
2 (sup

t
T $(t)) |

�

&�
B=s(=x) dx&R=s(=x) dx

=(2=)&1 2(=s) sup
t

T $(t).

Using b=s(=x) in place of B=s(=x) above and proceeding in the same manner,
we have

s&1 |
r+s

r
T(x) dx�&(2=)&1 2(=s) sup

t
T $(t),

so that (1.37) holds and the proof is complete.
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